Investigating the flood-affected areas of Khuzestan in the period from 7 March 2019 to 24 Avril 2019 using NDVI, NDBaI and NDWI indices and analyzing the degradation process of Hourol Azim wetland from 2000 to 2023 using Random Forest Model (RTC)

Document Type : Original Article

Author

zanjan

10.22034/gahr.2023.413223.1931

Abstract

The Hourol Azim wetland is one of the border water resources of Iran and Iraq, which has witnessed severe floods and a severe decrease in water level in recent years, and has experienced environmental crises in the form of drought, destruction of farms, and dust storms. In this research, the random forest algorithm was used to investigate the change process of Hourol Azim wetland from 2000 to 2023, and in addition, to investigate the expansion of water areas caused by the flood of April 2019 from the spectral indices NDWI, NDVI and NDBaI in the period of March 7. It was used on April 8 and April 24, 2019. With the reduction of the wetland level, the temperature of 77 degrees Celsius was recorded in some parts of the northeast of the wetland in May 2023. The LST index showed the highest positive correlation with the NDBaI index at the rate of 0.72 on March 7, 2019, and the highest negative correlation between the NDVI index and LST was obtained at the rate of -0.73 in 2000. In 2000, the surface of Hourol Azim wetland was equal to 256 square kilometers, and this amount increased to 780 square kilometers in 2023. However, at the time of the flood in April 2018, at the maximum intensity of the flood, the water level of the lagoon increased to 3200 square kilometers along with the outflow of the Karkhe River. At the time of the flood, vegetation experienced its lowest level and the largest area of 11,843 square kilometers was allocated to barren lands. The results show that the random forest model has detected different types of land use with high accuracy.

Keywords

Main Subjects


آوند، محمدتقی.، مرادی، حمیدرضا و رمضان زاده، مهدی. (1399). تهیه نقشه حساسیت سیل با استفاده از دو مدل یادگیری ماشین جنگل تصادفی و مدل خطی تعمیم یافته بیزین، محیط زیست و مهندسی آب، 6(1)، 95- 83.
اسلامی نژاد، سید احمد.، افتخاری، مبین.، محمودی زاده، سعید.، اکبری، محمد و حاجی الیاسی، علی. (1400). ارزیابی مدل های هوش مصنوعی مبتنی بر درخت به منظور پیش بینی خطر سیل در بستر GIS، تحقیقات منابع آب ایران، 17، 189- 174.
دولت آبادی، نرگس.، بنی حبیب، محمد و روزبهانی، عباس. (1399). مدلسازی سیستم منابع آب تالاب هورالعظیم/هورالهویزه با رویکرد پویایی سیستم، تحقیقات منابع آب ایران، 16(2)، 34- 18.
سلیمانی، فرشاد.، رفیعی، الهام.، مصباح زاده، طیبه و آذری، علی. (1400). استفاده از تصاویر سنتینل 1 جهت پایش خسارت سیلاب فروردین 1399 در جنوب استان کرمان بر اساس الگوریتم جنگل تصادفی، مجله علوم و مهندسی آبخیزداری ایران، 53، 32- 23.
سلیمانی، کریم و درویشی، شادمان. (1399). پهنه بندی و پایش خطر سیل بهار 1398 خوزستان با استفاده از داده های لندست 8، اکوهیدرولوژی، 7(3)، 662- 647.
Artis, D & Carnahan, W. (1982). Survey of emissivity variability in thermography of urban areas, Remote Sens. Environ. 12 (4), 313-329.
Bijeesh, T. V., & Narasimhamurthy, K. N. (2019), March. A Comparative Study of Spectral Indices for Surface Water Delineation Using Landsat 8 Images. In 2019 IEEE International Conference on Data Science and Communication (IconDSC), 1-5.
Billah, M., Saiful Islam, A & Bin Mamoon, W. (2023), Random Forest classifications for landuse mapping to assess rapid flood damage using sentinel-1 and sentinel-2 data, Remote Sensing Application: Society and Environment, 30, 100947.
Breiman, Leo. (2001). Random Forests. Machine Learning. 45, pp. 5-32.
Chen, X.Q., Cui, P., Li, Y., Yang, Z & Qi, Y.Q. (2007). Changes in glacial lakes and glaciers of post-1986 in the Poiqu River basin, Nyalam, Xizang (Tibet). Geomorphology 88 (3), 298–311.
Coppin, P., Jonckheere, I., Nackaerts, K., Muys, B & Lambin, E., (2004). Digital change detection methods in ecosystem monitoring: a review. Int. J. Remote Sens. 25 (9), 1565–1596.
Denil, M., Matheson, D.,   Freitas, N. (2014). Narrowing the Gap: Random Forests in Theory and in Practice. Proceedings of the 31st International Conference on Machine Learning, Beijing, China. JMLR: W and P. Vol.32. 9 pages.
Dópido, I., Villa, A., Plaza, A & Gamba, P. (2012). A quantitative and comparative assessment of unmixing-based feature extraction techniques for hyperspectral image classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 5 (2), 421– 435.
El Bastawesy, M., Gabr, S & White, K.H. (2013).  Hydrology and geomorphology of the Upper White Nile lakes and their relevance for water resource management in the Nile basin. Hydrol. Process.
27, 196–207.
El-Gamily, I.H., Selim, G & Hermas, E.A. (2010). Wireless mobile field-based GIS science and technology for crisis management process: a case study of a fire event, Cairo, Egypt. Egypt. J. Remote Sens. Space Sci. 13 (1), 21–29.
Gao, B.C. (1996). NDWI––normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 58 (3), 257–266.
Gong, Y., Duan, B., Fang, S., Zhu, R., Wu, X., Ma, Y & Peng, Y. (2018). Remote estimation of rapeseed yield with unmanned aerial vehicle (UAV) imaging and spectral mixture analysis. Plant Methods 14 (1), 1–14.
Ghosh, A & Dey, P. (2021). Flood severity assessment of the coastal tract situated between muriganga and Sapta Mukhi estuaries of Sundarban Delta of India using frequency ration, Fuzzy Logic, Logistic regression and Random Forest models, Regional Studies in Marine Science, 42, 101624.
Jiyuan, L., Zengxiang, Z., Xinliang, X., Wenhui, K., Wancun, Z., Shuwen, Z., Rendong, L., Changzhen, Y., Dongsheng, Y., Shixin, W & Nan, J. (2010). Spatial patterns and driving forces of land use change in China during the early 21st century. J. Geog. Sci. 20 (4), 483–494.
Ji, L., Zhang, L & Wylie, B. (2009). Analysis of dynamic thresholds for the normalized difference water index. Photogramm. Eng. Remote Sens. 75 (11), 1307–1317.
Kotoky, P., Dutta, M.K & Borah, G.C. (2012). Changes in landuse and landcover along the Dhansiri River Channel, Assam – a remote sensing and GIS approach. J. Geol. Soc. India 79, 61–68.
Li, B & Zhou, X.Z. (2009). Research on extraction method of river water-body in mountain area of Western Sichuan based on MODIS data. Geogr. Geoinf. Sci. 2, 017.
Ling, C., Zhang, F.Q & Lin, H. (2010). Research on extracting coastal wetlands water information using composition ciwi water index. Resour. Environ. Yangtze Basin 2, 007.
Louppe, G. (2014). Understanding Random Forests, From Theory to Practice. University of Liège. Faculty of Applied Sciences. Department of Electrical Engineering and Computer Science. 223 pages.
 
Lu, S., Wu, B., Yan, N & Wang, H. (2011). Water body mapping method with HJ-1A/B satellite imagery. Int. J. Appl. Earth Obs. Geoinf. 13 (3), 428–434.
Mas, J.F & Flores, J.J. (2008). The application of artificial neural networks to the analysis of remotely sensed data. Int. J. Remote Sens. 29 (3), 617–663.
Maxwell, A.E., Warner, T.A & Fang, F. (2018). Implementation of machine-learning classification in remote sensing: An applied review. Int. J. Remote Sens. 39 (9), 2784–2817.
McFeeters, S.K. (1996). The use of the normalized difference water index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 17 (7), 1425–1432.
Mohamed, E.S., Saleh, A.M & Belal, A.A. (2014). Sustainability indicators for agricultural land use based on GIS spatial modelling in North of Sinai – Egypt. Egypt. J. Remote Sens. Space Sci. 17, 1–15.
Mohamed, I.N.L., Verstraeten, G. (2012). Analysing dune dynamics at the dune-field scale based on multi-temporal analysis of Landsat- TM images. Remote Sens. Environ. 119, 105–117.
Ouma, Y.O & Tateishi, R. (2006). A water index for rapid mapping of shoreline changes of five East African Rift Valley lakes: an empirical analysis using Landsat TM and ETM+ data. Int. J. Remote Sens. 27 (15), 3153–3181.
Plaza, A., Du, Q., Bioucas-Dias, J.M., Jia, X & Kruse, F.A. (2011). Foreword to the special issue on spectral unmixing of remotely sensed data. IEEE Trans. Geosci. Remote Sens. 49 (11), 4103–4110.
Polykretis, C., Grillakis, M.G & Alexakis, D.D. (2020). Exploring the impact of various spectral indices on land cover change detection using change vector analysis: A case study of Crete Island, Greece. Remote Sens. 12 (2), 319-334.
Qureshi, A.S., McCornick, P.G., Qadir, M & Aslam, Z. (2008). Managing salinity and waterlogging in the Indus Basin of Pakistan. Agric. Water Manage. 95, 1–10.
Rawat, J.S., Biswas, V & Kumar, M. (2013). Changes in land use/cover using geospatial techniques: a case study of Ramnagar town area, district Nainital, Uttarakhand, India. Egypt. J. Remote Sens. Space
Sci. 16, 111–117.
Rashid, S.F. (2000). The urban poor in Dhaka city: their struggles and coping strategies during the floods of 1998. Disasters 24 (3), 240– 253.
Rasid, H & Haider, W. (2003). Floodplain residents’ preferences for water level management options in flood control projects in Bangladesh. Nat. Hazards 28 (1), 101–129.
Rogan, J & Chen, D.M. (2004). Remote sensing technology for mapping and monitoring land-cover and land-use change. Prog. Plan. 61,301–325.
Rogers, A.S & Kearney, M.S. (2004). Reducing signature variability in unmixing coastal marsh thematic mapper scenes using spectral indices. Int. J. Remote Sens. 25 (12), 2317–2335.
Schmuck-Widmann, H. (1996). Living with the Floods: Survival Strategies of Char-Dwellers in Bangladesh. LN-Vertrieb.
Senkal, O. (2010). Modeling of solar radiation using remote sensing and artificial neural network in Turkey. Energy 35 (12), 4795–4801.
Singh, A. 1989. Digital change detection techniques using remotelysensed data. Int. J. Remote Sens. 10 (6), 989–1003.
Singha, S., Bellerby, T.J & Trieschmann, O. (2013). Satellite oil spill detection using artificial neural networks. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 6 (6), 2355–2363.
Sun, Z., Ma, R & Wand, Y. (2009). Using Landsat data to determine land use changes in Datong basin, China. Environ. Geol. 57, 1825– 1837.
Tockner, K., Bunn, S.E., Gordon, C., Naiman, R.J., Quinn, G.P & Stanford, J.A. (2008). Flood plains: critically threatened ecosystems. In: Polunin, N. (Ed.), Aquatic Ecosystems: Trends and Global Prospect. Cambridge University Press, Cambridge, 45–64.
Wu, W.Y., Shen, X.H., Zou, L.J., Lu, S.L & Zhang, G.F. (2008). An integrated method for water body detection and delineation using Landsat ETM+ data. Bull. Sci. Technol. 24, 252–259.
Wu, C & Murray, A.T. (2003). Estimating impervious surface distribution by spectral mixture analysis. Remote Sens. Environ. 84 (4), 493–505.
Wu, C. (2009). Quantifying high-resolution impervious surfaces using spectral mixture analysis. Int. J. Remote Sens. 30 (11), 2915–2932.
Xia, J & Zhang, Y. (2008). Water security in North China and countermeasure to climate change and human activity. Phys. Chem. Earth Parts A/B/C 33 (5), 359–363.
Xiao, X., Boles, S., Liu, J., Zhuang, D., Frolking, S., Li, C & Moore III, B. (2005). Mapping paddy rice agriculture in Southern China using multi-temporal MODIS images. Remote Sens. Environ. 95 (4), 480–492.
Xu, J. (2004). A study of anthropogenic seasonal rivers in China. Catena 55 (1), 17–32.
Xu, H. (2006). Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int. J. Remote Sens. 27 (14), 3025–3033.
Yuan, F., Sawaya, K.E., Loeffelholz, B.C & Bauer, M.E. (2005). Land cover classification and change analysis of the Twin Cities (Minnesota). Remote Sens. Environ. 98, 317–328.
Zhong, Y., Wang, X., Zhao, L., Feng, R., Zhang, L & Xu, Y. (2016). Blind spectral unmixing based on sparse component analysis for hyperspectral remote sensing imagery. ISPRS J. Photogramm. Remote Sens. 119,  49–63.