Spatial and Temporal trend in horizontal visibility and extinction coefficient in Northwest Iran

Document Type : Original Article

Authors

1 1-University of Mohaghegh Ardabili, Department of Physical Geography, Ardabil, Iran. 4- Geography Department, Payam-e-Noor University, Tehran, Iran.

2 University of Mohaghegh Ardabili, Department of Physical Geography, Ardabil, Iran.

3 Iranian Meteorological Organization (IRIMO), East Azerbaijan Province Central Bureau of Meteorology, Tabriz, Iran

10.22034/gahr.2023.413652.1932

Abstract

Horizontal visibility variations represent changes in air quality. This study is carried out to investigate trend in horizontal visibility in northwest of Iran during 1985-2020. In this regard hourly observational visibility data from 27 meteorological stations was obtained from IRIMO. After screening and selecting the reliable data series, extinction coefficient was calculated by Kashmeider's approach. Ridit analysis and Mann-Kendall statistical tests were used to detect trends in visibility and extinction coefficient. Also, 5 visibility categories were determined and the percentages of each category got calculated. Results showed that the annual regional-average of horizontal visibility (extinction coefficient) was calculated as ~11.4 (0.173) km in the studied period. Ridit output variations showed that visibility improvement / weakening periods was observed in different times according to the environmental conditions of each station. In most stations, the increasing trend of horizontal visibility often formed through the reduction of average visibility percentages; increase in good and very good visibilities and finally stability in bad and very bad visibilities. The highest (lowest) seasonal extinction coefficient obtained for winter (summer) with 0.179 (0.168) km. A perfect inverse correspondence was observed between ridit outputs and extinction coefficient in terms of fluctuation periods and trend direction in all stations. Spatial distribution of parameters showed that the highest (lowest) values of ridit (extinction coefficient) were obtained in several stations located in the north of the studied area. In 18 stations out of 27 studied stations, the increasing (decrease) trend of ridit (extinction coefficient) was detected, which both indicate the increasing trend of the horizontal visibility in the northwest of Iran.

Keywords

Main Subjects


- باغی، ملیحه؛ راشکی، علی رضا؛ محمودی قرائی، محمد حسین (1399)، بررسی خصوصیات شیمیایی کانی شناسی گردو غبار ورودی به شمال شرق ایران و پتانسیل بیماری زایی آن، جغرافیا و مخاطرات محیطی، 19 (1)، 153-139.
- باقرآبادی، رسول. (1400)، تجزیه و تحلیل روند تغییرات گردوغبار و ارتباط آن با شاخص SPI (مطالعه موردی: شهر اهواز)، جغرافیا و روابط انسانی. 237-224 (3)4.
- ثابت قدم، سمانه؛ احمدی گیوی، فرهنگ؛ گلستانی، یحیی (1394)، کاربست روش پردازش رقمی تصویر در تعیین ضریب خاموشی جو شهری تهران، نشریه ژئوفیزیک ایران، جلد 9، شماره 2، صص 51-40.
- ثابت قدم، سمانه؛ احمدی گیوی، فرهنگ؛ گلستانی، یحیی (1395)، بررسی تغییرات ضریب خاموشی جوّ بر مبنای دید افقی در چهار فرودگاه پُرتردد کشور. فیزیک زمین و فضا، دوره 42، شماره 2، صص 467-459.
- حاتمی مهند، جلال­الدین؛ ثابت قدم، سمانه؛ احمدی گیوی، فرهنگ (1398)، بررسی شرایط هواشناسی کمینه دید افقی روزانه با استفاده از اطلاعات دستگاه RVR فرودگاه امام خمینی، نشریه تحلیل فضایی مخاطرات محیطی، سال ششم، شماره 1، صص 30-17.
- حجازی، سید عباس؛ مباشری، محمدرضا؛ مجیدی، داود (1393)، استفاده از تصویر ماهواره ای در محاسبه قابلیت دید افقی جو، نشریه پژوهش های اقلیم شناسی، سال پنجم، شماره هفدهم و هیجدهم، صص 57-47.
- رسولی، علی اکبر؛ ساری صراف، بهروز؛ محمدی، غلام حسن (1389). تحلیل روند وقوع پدیده اقلیمی گرد و غبار در غرب کشور در 55 سال اخیر با استفاده از روش های آماری ناپارامتری، فصل نامه جغرافیای طبیعی، سال سوم، شماره 3، صص 28-15.
- زینالی، بتول و اصغری، صیاد (1397)، ارزیابی برخی شاخص های شناسایی گرد وغبار و پایش آن (مطالعه موردی طوفان 10 اوت 2008 شرق ایران)، نشریه جغرافیا و برنامه ریزی، سال 22، شماره 65، صص 18-1.
- سبحانی، بهروز؛ صفریان زنگیر، وحید؛ فیض اله زاده، سینا (1399)، مدل‏سازی و پیش‏بینی گردوغبار در غرب ایران، پژوهش های جغرافیای طبیعی، 52(1)، 17-35.
- قهرمانی حیران، التفات (1394)، ارزیابی اثرات توسعه شهری و نوسانات اقلیمی در تغییرات فراوانی وقوع پدیده مه-دود در کلان شهر تبریز، پایاننامه کارشناسی ارشد، دانشگاه تبریز، 80 صفحه.
- محمد خان، شیرین (1396)، بررسی وضعیت و روند تغییرات طوفان های گرد و غبار در ایران در دوره زمانی ۱۳۶۴ -۱۳۸۴، مرتع و آبخیزداری،70(2)، ص ۵۱۲-۴۹۵.
- محمدی، غلام حسن (1394)، تحلیل سازوکارهای جوی انتقال گردوغبار به غرب کشور، دکتری تخصصی، آب و هواشناسی، دانشکده جغرافیا و برنامه ریزی، دانشگاه تبریز، رساله دکتری.
- مصباح زاده، طیبه؛ سلیمانی ساردو، فرشاد؛ سلاجقه، علی؛ زهتابیان، غلام رضا؛ رنجبر، عباس؛ ماریو مارسلو (1399)، واکاوی تغییرات زمانی و مکانی روزه ای گرد و غبار در فلات مرکزی ایران، فصلنامه علمی–پژوهشی تحقیقات مرتع و بیابان ایران، 27، (4)، 759-745.
- نوروزی، علی اکبر؛ شعاعی، ضیاء الدین (1397)، شناسایی مناطق دارای پتانسیل تولید گرد و غبار در جنوب غرب ایران، مطالعه موردی استان خوزستان، مهندسی و مدیریت آبخیز، ۱۰ (3)، ۴۰۹-۳۹۸.
- یارمرادی، زهرا؛ نصیری، بهروز؛ کرمپور، مصطفی؛ و محمدی، غلام حسن. (1397)، تحلیل روند فراوانی روزهای گردوغباری در نیمه شرقی ایران در ارتباط با نوسانات اقلیمی. مهندسی اکوسیستم بیابان، 7(18 )، 1-14.
- Alhathloul, S. H., Khan, A., Mishra, A., (2021), Trend analysis and change point detection of annual and seasonal horizontal visibility trends in Saudi Arabia, Theoretical and Applied Climatology 144(3), 127-146.
- Baumer, D., Vogel, B., Versick, S., Rinke, R., Mohler, O. and Schnaiter, M., (2008), Relationship of visibility, aerosol optical thickness and aerosol size distribution in an ageing air mass over South-West Germany, Atmos. Environ., 42, 989-998.
- Cao, J.-j., Wang, Q.-y., Chow, J. C., Watson, J. G., Tie, X.-x., Shen, Z.-x., Wang, P., and An, Z.-s., (2012), Impacts of aerosol compositions on visibility impairment in Xi’an, China, Atmos. Environ., 59,559–566.
- Che, H., Zhang, X., Li, Y., et al., (2007), Horizontal visibility trends in China 1981-2005.Geophys. Res. Lett. 34. doi:10.1029/2007GL031450.
- Chen, Y., Xie, Sh., (2012), Temporal and spatial visibility trends in the Sichuan Basin, China 1973 to 2010, Atmospheric Research, 112: 25–34.
- Clarke, A., Gascoigne, M., Henderson-Sellers, A., and Williams, A., (1978), Modeling air pollution in Leeds (UK), Int. J. Environ. Stud., 12, 121–132.
- Craig, C.D., Faulkenberry, G.D., (1979), The application of ridit analysis to detect trends in visibility. Atmos. Environ. 13, 1617-1622.
- Deng, J., Wang, T., Jiang, Z., et al., (2012), Characterization of visibility and its affecting factors over Nanjing, China. Atmos. Res. 101, 681-691.
- Diederen, H., Guicherit, R., and Hol Londer, J., (1985), Visibility reduction by air pollution in the Netherlands, Atmos. Environ., 19, 377–383.
- Doyle, M., Dorling, S., (2002), Visibility trends in the UK 1950e1997. Atmos. Environ.36, 3161-3172.
- Eidels-Dubovoi, S., (2002), Aerosol impacts on visible light extinction in the atmosphere of Mexico City, Sci. Tot. Environ., 287, 213-220.
- Environmental Protection Agency (2001), Visibility in mandatory federal class I areas (1994– 1998), report, Off. of Air Qual. Plan. and Stand., Research Triangle Park, N. C, 286p.
- Founda, D., Kazadzis, S., Mihalopoulos, N., Gerasopoulos, E.,Lianou, M., and Raptis, P. I., )2016),  Long-term visibility variation in Athens (1931–2013): a proxy for local and regional atmospheric aerosol loads, Atmos. Chem. Phys., 16, 11219–11236,doi:10.5194/acp-16-11219-2016.
- Gao, L., Jia, G., Zhang, R., H, Che., C, Fu., T, Wang., M, Zhang., H, Jiang., P, Yan., (2011), Visual range trends in the Yangtze River Delta Region of China 1981e2005, J. Air Waste Manage. Assoc, 61(8): 843-849.
- Ghim, Y.S., Moon, K.C., Lee, S., et al., (2005), Visibility trends in Korea during the past two decades. J. Air WasteManage. Assoc. 55 (1), 73-82.
- Hänel, G., (1972), Computation of the extinction of visible radiation by atmospheric aerosol particles as a function of the relative humidity, based upon measured properties, J. Aerosol Sci., 3, 377–386.
- Haywood, J. and Boucher, O., (2000), Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: A review, Rev. Geophys., 38, 513–543.
- Husar, R.B., Holloway, J.M., Patterson, D.E., et al., (1981), Spatial and temporal pattern of eastern US haziness: a summary. Atmos. Environ. 15, 1919-1928.
- Husar, R.B., Husar, J.D., Martin, L., (2000), Distribution of continental surface aerosol extinction based on visual range data. Atmos. Environ. 34, 5067-5078.
- Hyslop N. P., (2009), Impaired visibility: the air pollution people see. Atmospheric Environment 43: 182–195.
- Jinhuan, Q. and Liquan, Y., (2000), Variation characteristics of atmospheric aerosol optical depths and visibility in North China during 1980–1994, Atmos. Environ., 34, 603–609.
- Kong, S. F., Li, L., Li, X. X., Yin, Y., Chen, K., Liu, D. T., Yuan, L., Zhang, Y. J., Shan, Y. P., and Ji, Y. Q., (2015), The impacts of fire work burning at the Chinese Spring Festival on air quality: insights of tracers, source evolution and aging processes, Atmos. Chem. Phys., 15, 2167–2184, doi:10.5194/acp-15-2167-2015.
- Koschmieder, H., (1926), Theorie der horizontalen Sichtweite Beit. Phys. Atmos. 12, p 33-55.
- Latimer, D., Bergstrom, R., Hayes, S., Liu, M., Seinfeld, J., Whitten, G., Wojcik, M. and Hillyer, M., (1978), The development of mathematical models for the prediction of anthropogenic visibility impairment, EPA-450/3/78-110a.
- Lee, C.G., Yuan, C.S., Chang, J.C., et al., (2005), Effects of aerosol species on atmospheric visibility in Kaohsiung City, Taiwan. J. Air Waste Manage. Assoc. 55, 1031-1041.
- Lee, D. O. (1983), Trends in summer visibility in London and southern England1962–1979, Atmos. Environ., 17, 151–159.
- Lee, D. O. (1990), The influence of wind direction, circulation type and air pollution emissions on summer visibility trends in southern England, Atmos. Environ. A-Gen., 24, 195–20.
- Lee, D.O., (1994), Regional variations in long-term visibility trends in the UK(1962-1990). Geography 79, 108-121.
- Lee, J. Y., Jo, W. K. and Chun, H. H., (2015), Long-term trends in visibility and its relationship with mortality, air-quality index, and meteorological factors in selected areas of Korea, Aerosol and Air Quality Research, 15(2), 673-681.
- Mahowald, N.M., Ballantine, J.A., Feddema, J., et al., (2007), Global trends in visibility: implications for dust sources. Atmos. Chem. Phys. 7, 3309-3339.
- Malm, W. C., (1999), Introduction to visibility, Cooperative Institute for Research in the Atmosphere (CIRA), Ft. Collins, Colorado, 79 pp.
- Malm, W., Sisler, J., Huffman, D., Eldred, R. and Cahill, T., (1994), Spatial and seasonal trends in particle concentrations and optical extinction in the United States, Geophys Res Lett., 99, 1347-1370.
- Malm, W.C., Molenar, J.V., Eldred, R.A., et al., (1996), Examining the relationship among atmospheric aerosols and light scattering and extinction in the Grand Canyon Area. J. Geophys. Res. 101 (D14), 19251-19265.
- Molnar, A., Meszaros, E., Imre, K., et al., (2008.), Trends in visibility over Hungary between 1996-2002. Atmos. Environ. 42, 2621-2629.
- Park, R. J., Jacob, D. J., Chin, M., and Martin, R. V. (2003), Sources of carbonaceous aerosols over the United States and implications for natural visibility, J. Geophys. Res., 108, 4355, doi:10.1029/2002JD003190.
- Park, R. J., Jacob, D. J., Kumar, N., and Yantosca, R. M. (2006), Regional visibility statistics in the United States: Natural and trans-boundary pollution influences, and implications for the Regional Haze Rule, Atmos. Environ., 40, 5405–5423.
- Ozkaynak, H.A., Schatz, D., Thurston, G.D., Isaacs, R.G., Husar, R.B., (1985), Relationships between aerosol extinction coefficients derived from airport visual range observations and alternative measure of airborne particles mass, J. Air Poll. Control Assoc, 35(11): 1176–1185.
- Sari Sarraf, B., Rasouli1, A. A., Mohammadi Gh. H., Hoseini Sadr, A., (2016), Long-term trends of seasonal dusty day characteristics—West Iran, Arab Journal Geoscience, 9 (563): 1-10.
- Sati, A. P. and Mohan, M., (2014), Analysis of air pollution during a severe smog episode of November 2012 and the Diwali Festival over Delhi, India, Int. J. Remote Sens., 35, 6940–6954.
- Seidel, D. J. and Birnbaum, A. N., (2015), Effects of Independence Day fireworks on atmospheric concentrations of fine particulate matter in the United States, Atmos. Environ., 115, 192–198.
- Seinfeld, H. and Pandis, N., (2006), Atmospheric chemistry and physics-from air pollution to climate change, Second Edition, John Wiley & Sons, 1203 pp.
- Singh, A. and Dey, S., (2012), Influence of aerosol composition on visibility in megacity Delhi, Atmos. Environ., 62, 367–373.
- Singh, A., Bloss, W. J., and Pope, F. D., (2017), 60 years of UK visibility measurements: impact of meteorology and atmospheric pollutants on visibility, Atmos. Chem. Phys., 17, 2085–2101, doi:10.5194/acp-17-2085-2017
- Singh, A., Bloss, W. J., and Pope, F. D., (2015), Remember, remember the5th of November; gunpowder, particles and smog, Weather, 70,320–324.
- Sloane, C.S., (1982a), Visibility trends e I. Methods of analysis. Atmos. Environ. 16, 41-51.
- Sloane, C.S., (1982b), Visibility trends e II. Mid-eastern United States 1948-1978. Atmos. Environ. 16, 2309-2321.
- Sloane, C.S., (1983), Summer time visibility declines: meteorological influences, Atmos. Environ., 17, 763-774.
- Sloane, C.S., (1984), Meteorologically adjusted air quality trends: visibility, Atmos. Environ., 18, 1217-1229.
- Tiwari, S., Payra, S., Mohan, M., Verma, S., and Bisht, D. S., (2011), Visibility degradation during foggy period due to anthropogenic urban aerosol at Delhi, India, Atmospheric Pollution Research, 2,116–120.
- Trijonis, J., (1982), Existing and natural background levels of visibility and fine particles in the rural East, Atmos. Environ., 16, 2431-2445.
- Tsai Y. I., Kuo S. C., Lee W. J., Chen C. L., Chen P. T., (2007), Long-term visibility trends in one highly urbanized, one highly industrialized, and two rural areas of Taiwan. Science of the Total Environment 382: 324–341.
- Wang Q., Cao J., Tao J., Li N., Su X., L. W., Antony Chen, Ping Wang, Zhenxing Shen, Suixin Liu, Wenting Dai (2013), Long-Term Trends in Visibility and at Chengdu, China. PLoS ONE 8(7): e68894. doi:10.1371/ journal.pone.0068894.
- Watson J. G., (2002), Visibility: Science and Regulation. Journal of the Air & Waste Management Association 52: 628–713.
- Watson, J. and Chow, J., (2006), Visibility and air pollution, WIT Transactions on Ecology and the Environment, 99, 5 pp.
- Wilkins, E., (1954), Air pollution and the London fog of December, 1952, Journal of the Royal Sanitary Institute, 74, 1–15.
- WMO, World Meteorological Organization, (1992), International Meteorological Vocabulary, WMO-NO. 182, Geneva, Switzerland.
- WMO, World Meteorological Organization., (1974), Manual on Codes, vol. I. International codes. WMO Publ., Geneva, Switzerland.
- Wu, D., Tie, X., Li, C., Ying, Z., Lau, A. K.-H., Huang, J., Deng, X.,and Bi, X., (2005), An extremely low visibility event over the Guangzhou region: A case study, Atmos. Environ., 39, 6568–6577.
- Yang, L.-x., Wang, D.c., Cheng, S. h., Wang, Z., Zhou, Y., Zhou, X.-h., and Wang, W.-x., (2007), Influence of meteorological conditions and particulate matter on visual range impairment in Jinan, China, Sci. Total Environ., 383, 164–173.
- Yuan, C.S., Lee, C.G., Liu, S.H., et al., (2002), Developing strategies for improving urban visual air quality. Aerosol Air Qual. Res. 2, 9-22.
- Zhao, P., Zhang, X., Xu, X., Zhao, X., (2011), Long-term visibility trends and characteristics in the region of