استفاده از PPI و مجسم کننده n- بعدی در شناسایی و دسته بندی خالص ترین پیکسل ها و منحنی های طیفی با کمک داده های استر (مطالعه موردی: جنوب غرب اردستان، اصفهان)

نوع مقاله : مقاله پژوهشی

نویسنده

موسسه آموزش عالی امین، گروه جغرافیا، فولادشهر، اصفهان، ایران

چکیده

بیشتر روش های سنجش از دور بر این حقیقت استوار است که تصاویر سنجش از دور در باندهای طیفی متعدد و پهنای باندی کوچک تصویربرداری شده باشند و بتوان طیف پیکسل را استخراج کرد. برای مشخص کردن، شناسایی و دسته بندی خالص ترین پیکسل ها و منحنی های طیفی بعد از انجام کسر کمترین نوفه (MNF) و اجرای تبدیل شاخص خلوص پیکسل (PPI) از مجسم کننده n- بعدی استفاده می شود. گروه پیکسل هایی که در گوشه های نمودار پراکندگی قرار دارند می توانند از دیگر داده های ابری جدا شده و به عنوان عضو انتهایی که با نوع خاصی از کانی ها و سنگ ها یا هر پدیده مشخصی مطابقت دارد انتخاب شوند. با مراجعه به محل واقعی این پیکسل ها در تصویر، طیف عضوهای انتهایی استخراج می شود. بدین منظور این فرایند بعد از کالیبراسیون میانگین بازتاب نسبی درونی (IARR) بر روی دسته داده های استر در منطقه جنوب غرب اردستان، اصفهان اجرا شد. واحدهای زمین شناختی منطقه مورد مطالعه اساساً شامل واحدهای رسی (مانند شیل)، سنگ های کربناته (کلسیت) و پوشش گیاهی می باشد. نتایج این فرایند منجر به استخراج سه عضو انتهایی شامل ایلیت، کلسیت و گیاه سبزینه دار از تصویر مورد نظر گردید.

کلیدواژه‌ها


عنوان مقاله [English]

Use of PPI and n-dimensional visualizer in identifying and classifying the purest spectral pixels and curves by ASTER data (case study: southwest Ardestan, Isfahan)

نویسنده [English]

  • Hamid Tavakkoly
Amin Institute of Higher Education, Department of Geography, Foolad Shahr, Isfahan, Iran
چکیده [English]

Many commonly used spectral image analysis techniques are based on the fact that remotely sensed imagery is sampled with numerous spectral bands at narrow bandwidths, making it possible to construct a spectrum for each pixel in the image. For identify and classify the most pure pixels and spectral curves, the n-dimensional visualizer is used after performing the Minimum Noise Fraction (MNF) and Pixel Purity Index (PPI). The group of pixels in the corners of the scatter plot can be separated from other cloud data and selected as end-members corresponding to a particular type of minerals, rocks, or any individual phenomenon. Referring to the actual location of these pixels in the image, the end-member spectrum is extracted. Therefore, this process was performed after calibration of Internal Average Relative Reflection (IARR) on the ASTER dataset in southwest Ardestan, Isfahan. The geological units of the study area mainly consist of clay units (such as shale), carbonate rocks (calcite) and vegetation. This process resulted in the extraction of three end-member including illite, calcite and the green vegetation from the image.

کلیدواژه‌ها [English]

  • Pixels and pure spectral curves of image
  • calibrated ASTER data
  • Ardestan
برای بدست آوردن طیف خالص پیکسل تصویر، شاخص خلوص پیکسل و مجسم کننده n- بعدی روش های مناسبی هستند. این فرایند منجر به استخراج سه عضو انتهایی از تصویر منطقه مورد نظر گردید. عضو انتهایی اول در باند ۶، ۸ و ۹ جذب نشان می دهد که مشابه طیف ایلیت است. این طیف به عنوان نماینده طیف کانی های رسی بویژه شیل در منطقه مورد مطالعه است. عضو انتهایی دوم در باند ۸ جذب اصلی و در باند ۵ جذب بسیار ضعیفی نشان می دهد که شباهت بسیاری به طیف کلسیت دارد. عضو انتهایی سوم در باند ۲ جذب و باند ۳ بازتاب قوی نشان می دهد که طیف گیاه سبزینه دار است. طیف های بدست آمده را می توان بعنوان طیف مرجع برای انجام پردازش های مختلف طیفی مانند SAM، LSU و ... مورد استفاده قرار داد.
 
4. مراجع
 
1- ASTER user's guide (2005), part 1, ver 3.1
2- Boardman, J. W. (1993). "Automated spectral unmixing of AVIRIS data using convex geometry concepts: in Summaries, Fourth JPL Airborne Geoscience Workshop". JPL Publication 93-26, v. 1, pp. 11 - 14.
3- Boardman. J, Kruse. F.A. (1994). "Automated spectral analysis: A geological example using AVIRIS data, north Grupevin Mountains, Nevada." Proceeding of the tenth thematic conference on geological remote sensing, vol. I, PP. 407-418.
4- Boardman, J. W., Kruse, F. A., and Green, R. O. (1995). "Mapping target signatures via partial unmixing of AVIRIS data: in Summaries, Fifth JPL Airborne Earth Science Workshop". JPL Publication 95-1, v. 1, pp. 23-26.
5- ENVI V. 4.0 Tutorial
6- ENVI V. 4.0 User guide
7- Geological survey of Iran, geological map, 1977; Ardestan area, 1:100,000 series
8- Tavakkoli, H.; Cheraghi, Y. (2011). "Enhancement of Lithological units and green vegetations in southwest of Ardestan-Esfahan by relative absorption band depth method". 29th Symposium on Geosciences, 17-18 Feb., Tehran, Iran.