پایش فروچاله‌های شهر کبودرآهنگ همدان با استفاده از تکنیک تداخل‌سنجی راداری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناس ارشد دانشگاه آزاد تهران جنوب

2 عضو هیئت علمی و مدیر گروه نقشه برداری دانشده فنی مهندسی دانشگاه ازاد تهران جنوب

10.22034/gahr.2022.336752.1695

چکیده

فرونشست سطح زمین در اثر استخراج بی‌رویه از منابع آب زیرزمینی، یکی از رویدادهایی است که در ایران به وفور مشاهده شده است. با توجه به استخراج بی‌رویه منابع آب زیرزمینی در کشور، متاسفانه روزبهروز استان‌های بیشتری دچار فرونشست زمین شده یا در معرض خطر فرونشست زمین قرار می‌گیرند دشت کبودرآهنگ همدان غنی‌ترین دشت استان همدان از نظر دارا بودن منابع آب زیرزمینی می‌باشد اما متاسفانه در 30 سال اخیر به علت برداشت بیش از حد از آب‌های زیرزمینی به منظور تامین نیازهای کشاورزی و صنعتی و عدموجود نظارت کافی بر این مسئله، به شدت با افت سطح آب‌های زیرزمینی مواجه شده است که سبب بروز فرونشست و البته وقوع فروچاله‌ها در شهر کبودرآهنگ شده است. هدف از انجام این پژوهش شناسایی مناطق مستعد وقوع فروچاله با بررسی نرخ فرونشست جهت پیشگیری و کاهش آسیب‌های ناشی از آن می‌باشد.با نتایج پردازش بدست آمده به کمک شش سری تصاویر راداری ماهواره‌ SENTINEL-1در بازه زمانی سال 2017 الی 2018 با استفاده از نرم‌افزار SNAPنرخ فرونشست بدست آمده است و براساس نرخ بدست آمده نواحی پرخطر و مستعد وقوع فروچاله شناسایی شده است. نتایج این بررسی نشان می‌دهد که در بازه یک ساله به میزان 5/14 سانتی‌متر محدوده مورد مطالعه فرونشست داشته است، که این فرونشست به طور جزئی بیشتر در مناطق کردآباد، نوآباد، کبودرآهنگ، فامنین و به طور کلی در دشت فامنین، کبودرآهنگ، قهاوند و اطراف همدان اتفاق افتاده است. که این نتایج می‌تواند خبر وقوع خطر فروچاله‌ها در این مناطق را بدهد.نتایج نهایی در مجموع فرونشست حدود 5/14 سانتی‌متر در محدوده را نشان می‌دهد که بیشتر این فرونشست‌ها در اطراف مناطق شهری و نزدیک به مناطق مسکونی اتفاق افتاده است که این عامل می‌تواند خبر از وقوع فاجعه‌ای انسانی قریب به وقوع را در استان همدان به خصوص دشت کبودرآهنگ را بدهد.

کلیدواژه‌ها


عنوان مقاله [English]

Monitoring the sinkholes of KaboudarAhang city of Hamedan using radar interferometry technique

نویسندگان [English]

  • Arezou Amini 1
  • Nikrouz Mostofi 2
1 . M.Sc. Remote Sensing, Faculty of Engineering, Tehran Azad University - South
2 Faculty member and Director of Surveying Engineering Department, Faculty of Engineering, Tehran Azad University- South
چکیده [English]

Land subsidence due to uncontrolled extraction of groundwater resources is one of the events that has been observed in abundance in Iran. Due to the improper extraction of groundwater resources in the country, unfortunately, . Kabudrahangplain of Hamedan is the richest plain of Hamedan province in terms of having groundwater resources, but unfortunately in the last 30 years due to excessive abstraction of groundwater to meet agricultural and industrial needs and lack of adequate monitoring of this issue, Groundwater level has decreased, which has caused subsidence and, of course, sinkholes in Kabudrahang city. The purpose of this study is to identify sinkholes to prevent or reduce the damage caused by it.
In this research, the radar interference method with the help of SENTINEL-1 satellite radar images using SNAP software has been used to monitor subsidence and subsidence, and the subsidence rate and the number of subsidence have been reported.
After reviewing the approximately quarterly periods of the study area using the image of the first period and the last period to a period of 361 days, i.e. the images of 09/15/2017 to 10/09/2018 in the study area in general was examined. The results of this study show that in the period of one year, the study area has subsided by 14.5 cm, which is more subsidence in Kordabad, Noabad, KaboudarAhang, Famenin and in general in Fameninplain,Kabudrahang, Qahvand and around Hamedan has happened. These results can indicate the danger of landslides in these areas.
The final results show a total subsidence of about 14.5 cm in the range that most of these subsidence occurred around urban areas and close to residential areas that this factor can be a news of occurrence. To bring about imminent human catastrophes in Hamedan province, especially KaboudarAhang plain.

کلیدواژه‌ها [English]

  • subsidence
  • sinking
  • radar interference
  • KaboudarAhang city
  • Hamadan province
  • ابراهیمی، ‌عطرین، قاسمی، ‌افشان،و گنجائیان. (2020). پایش میزان فرونشست محدوده شهری پاکدشت با استفاده از روش تداخل سنجی راداری. مجله جغرافیا و روابط انسانی، 8(2)، 29-41.
  • امیری، سیدهراضیه، و رضایی،یوسف،و حیدری‌مظفر، مرتضی و جیرانی، کهربا، 1398، "بررسی ارتباط بین عوامل هیدروژئولوژی و افت سطح آب زیرزمینی در وقوع فرونشست در دشت کبودرآهنگ با استفاده از تصاویر ماهواره­ای و GIS"، پایان­نامه کارشناسی­ارشد، موسسه آموزش عالی عمران و توسعه همدان، همدان.
  • رشیدترابی، ف، بینا، ک، 1393، "بررسی و اولویت­بندی عوامل کاهش سطح آب زیرزمینی و ارائه راهکار: مطالعه موردی دشت مشهد"، نهمین سمپوزیوم پیشرفت­های علوم و تکنولوژی مشهد.
  • کرم، ا، ضیائیان، پ، و­همدانی، ن، ا، 1392، "بررسی عوامل موثر در وقوع فروچاله­های دشت ابرکوه و تهیه­ی نقشه­ی خطر نواحی مستعد بروز آن"، مجله کاوش­های جغرافیایی مناطق بیابانی، 1 (1)، صفحه 17 تا 34.
  • مهشادنیا، ف، 1385، "مروری بر نشست منطقه­ای زمین در ایران و تدوین بانک اطلاعات فرونشست زمین"، دهمین همایش انجمن زمین­شناسی ایران، شماره 2.
  • Atzori, S., Baer, G., Antonioli, A., & Salvi, S. (2015). InSAR‐based modeling and analysis of sinkholes along the Dead Sea coastline. Geophysical Research Letters, 42(20), 8383-8390.
  • Avni, Y., Lensky, N., Dente, E., Shviro, M., Arav, R., Gavrieli, I., Filin, S. (2016). Self‐accelerated development of salt karst during flash floods along the Dead Sea Coast, Israel. Journal of Geophysical Research: Earth Surface, 121(1), 17-38.
  • Baer, G., Schattner, U., Wachs, D., Sandwell, D., Wdowinski, S., & Frydman, S. (2002). The lowest place on Earth is subsiding—An InSAR (interferometric synthetic aperture radar) perspective. Geological Society of America Bulletin, 114(1), 12-23.
  • Bakon, M., Czikhardt, R., Papco, J., Barlak, J., Rovnak, M., Adamisin, P., & Perissin, D. (2020). remotIO: A Sentinel-1 multi-temporal InSAR infrastructure monitoring service with automatic updates and data mining capabilities. Remote Sensing, 12(11), 1892.
  • Berardino, P., Costantini, M., Franceschetti, G., Iodice, A., Pietranera, L., &Rizzo, V. (2003). Use of differential SAR interferometry in monitoring and modelling large slope instability at Maratea (Basilicata, Italy). Engineering Geology, 68(1-2), 31-51.
  • Bovenga, F., Nutricato, R., Refice, A., & Wasowski, J. (2006). Application of multi-temporal differential interferometry to slope instability detection in urban/peri-urban areas. Engineering Geology, 88(3-4), 218-239.
  • Bozzano, F., Carabella, C., De Pari, P., Discenza, M. E., Fantucci, R., Mazzanti, P., . . . Sciarra, N. (2020). Geological and geomorphological analysis of a complex landslides system: The case of San Martino sulla Marruccina (Abruzzo, Central Italy). Journal of Maps, 16(2), 126-136.
  • Bozzano, F., Mazzanti, P., Perissin, D., Rocca, A., De Pari, P., & Discenza, E. (2017). Basin scale assessment of landslides geomorphological setting by advanced InSAR analysis. Remote Sensing, 9(3), 267.
  • Castañeda, C., Gutiérrez, F., Manunta, M., & Galve, J. P. (2009). DInSAR measurements of ground deformation by sinkholes, mining subsidence, and landslides, Ebro River, Spain. Earth Surface Processes and Landforms, 34(11), 1562-1574.
  • Castaneda, C., Pourthie, N., & Souyris, J.-C. (2011). Dedicated SAR interferometric analysis to detect subtle deformation in evaporite areas around Zaragoza, NE Spain. International Journal of remote sensing, 32(7), 1861-1884.
  • Chang, L., & Hanssen, R. F. (2014). Detection of cavity migration and sinkhole risk using radar interferometric time series. Remote Sensing of Environment, 147, 56-64.
  • Closson, D., Karaki, N., Hansen, H., Derauw, D., Barbier, C., & Ozer, A. (2003). Space-borne radar interferometric mapping of precursory deformations of a dyke collapse, Dead Sea area, Jordan. International Journal of remote sensing, 24(4), 843-849.
  • Ferretti, A., Prati, C., & Rocca, F. (2001). Permanent scatterers in SAR interferometry. IEEE Transactions on geoscience and remote sensing, 39(1), 8-20.
  • Galve, J. P., Castañeda, C., Gutiérrez, F., & Herrera, G. (2015). Assessing sinkhole activity in the EbroValley mantled evaporite karst using advanced DInSAR. Geomorphology, 229, 30-44.
  • Gongyu, L., & Wanfang, Z. (1999). Sinkholes in karst mining areas in China and some methods of prevention. Engineering Geology, 52(1-2), 45-50.
  • Gutiérrez, F., Galve, J. P., Lucha, P., Castañeda, C., Bonachea, J., & Guerrero, J. (2011). Integrating geomorphological mapping, trenching, InSAR and GPR for the identification and characterization of sinkholes: A review and application in the mantled evaporite karst of the Ebro Valley (NE Spain). Geomorphology, 134(1-2), 144-156.
  • Hao, J., Wu, T., Wu, X., Hu, G., Zou, D., Zhu, X., . . . Ni, J. (2019). Investigation of a small landslide in the Qinghai-Tibet Plateau by InSAR and absolute deformation model. Remote Sensing, 11(18), 2
  • Intrieri, E., Gigli, G., Nocentini, M., Lombardi, L., Mugnai, F., Fidolini, F., & Casagli, N. (2015). Sinkhole monitoring and early warning: An experimental and successful GB-InSAR application. Geomorphology, 241, 304-314.
  • Jones, C. E., & Blom, R. (2014). Bayou Corne, Louisiana, sinkhole: Precursory deformation measured by radar interferometry. Geology, 42(2), 111-114.
  • Kang, Y., Zhao, C., Zhang, Q., Lu, Z., & Li, B. (2017). Application of InSAR techniques to an analysis of the Guanling landslide. Remote Sensing, 9(10), 1046.
  • Kim, J.-W., & Lu, Z. (2018). Association between localized geohazards in West Texas and human activities, recognized by Sentinel-1A/B satellite radar imagery. Scientific Reports, 8(1), 1-13.
  • Kim, J.-W., Lu, Z., & Degrandpre, K. (2016). Ongoing deformation of sinkholes in Wink, Texas, observed by time-series Sentinel-1A SAR interferometry (preliminary results). Remote Sensing, 8(4), 313.
  • Malinowska, A. A., Witkowski, W. T., Hejmanowski, R., Chang, L., van Leijen, F. J., &Hanssen, R. F. (2019). Sinkhole occurrence monitoring over shallow abandoned coal mines with satellite-based persistent scatterer interferometry. Engineering Geology, 262, 105336.
  • Nof, R. N., Abelson, M., Raz, E., Magen, Y., Atzori, S., Salvi, S., & Baer, G. (2019). SAR interferometry for sinkhole early warning and susceptibility assessment along the Dead Sea, Israel. Remote Sensing, 11(1), 89.
  • Nof, R. N., Baer, G., Ziv, A., Raz, E., Atzori, S., & Salvi, S. (2013). Sinkhole precursors along the Dead Sea, Israel, revealed by SAR interferometry. Geology, 41(9), 1019-1022.
  • Omidvar, K. (2011). Natural Hazards, Yazd: Yazd University Press.[In Persian].
  • Paine, J. G., Buckley, S. M., Collins, E. W., & Wilson, C. R. (2012). Assessing collapse risk in evaporite sinkhole-prone areas using microgravimetry and radar interferometryassessing sinkhole collapse risk using microgravimetry and radar interferometry. Journal of Environmental and Engineering Geophysics, 17(2), 75-87.
  • Robinson, T., Downs, C., Oliver-Cabrera, T., Zhang, B., Kruse, S., & Wdowinski, S. (2020). Relationships between Sinkhole-related features and activity and InSAR-detected Subsidence Points in West Central Florida.
  • Rucker, M. L., Panda, B. B., Meyers, R. A., & Lommler, J. C. (2013). Using InSAR to detect subsidence at brine wells, sinkhole sites, and mines. Carbonates and Evaporites, 28(1), 141-147.
  • Shi, Y., Tang, Y., Lu, Z., Kim, J.-W., & Peng, J. (2019). Subsidence of sinkholes in Wink, Texas from 2007 to 2011 detected by time-series InSAR analysis. Geomatics, Natural Hazards and Risk.
  • Veci, L. (2016). Sentinel-1 Toolbox TOPS Interferometry Tutorial. Array Systems Computing Inc.
  • Waltham, A. (1989). Ground subsidence: Blackie & Son Limited. First published.
  • Wasowski, J., & Bovenga, F. (2014). Investigating landslides and unstable slopes with satellite Multi Temporal Interferometry: Current issues and future perspectives. Engineering Geology, 174, 103-138.
  • Wilson, W. L., & Beck, B. F. (1988). Hydrogeologic factors associated with recent doline development in the Orlando area, Florida, USA. IAHS-AISH publication, 176, 1212-1217.
  • Zhao, J., Wu, J., Ding, X., & Wang, M. (2017). Elevation extraction and deformation monitoring by multitemporal InSAR of Lupu Bridge in Shanghai. Remote Sensing, 9(9), 897.