ارزیابی پتانسیل سیلابی دشت اردبیل با استفاده از مدل های فازی و تصاویر ماهواره ای

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استاد هیدرولوژی و هواشناسی، دانشکده علوم اجتماعی، دانشگاه محقق اردبیلی

2 Environmental Hazards, Marine Science Institute, Kish International Campus, University of Tehran, Tehran, Iran.

چکیده

دشت اردبیل یکی از نقاط سیلابی است که نیاز به درک پتانسیل سیلابی دارد. در این تحقیق پتانسیل سیل‌خیزی دشت اردبیل با استفاده از پارامترهای محیطی، مشاهدات نقاط سیلابی و کمبود سیل و الگوریتم‌های پیش‌بینی شامل جنگل تصادفی و رگرسیون لجستیک ساخته شد. پارامترهای مستقل شامل DEM، شیب، جنبه، فاصله از آبراه، فاصله از سد، تجمع رواناب، کاربری اراضی، شکل زمین و شاخص ها، شاخص موقعیت توپوگرافی (TPI)، حوضه آبریز اصلاح شده (MCA)، شاخص ناهمواری زمین (TRI)، شاخص رطوبت توپوگرافی (TWI) و شاخص قدرت جریان (SPI). نتایج ارزیابی Roc-AUC نشان داد که مدل RF و LR با 0.99 و 0.98 اعتبارسنجی شده است و نشان می‌دهد که مدل‌های جنگل تصادفی و رگرسیون لجستیکی توانایی پیش‌بینی و تهیه نقشه حساسیت به سیل در دشت اردبیل را دارند. خروجی پارامترهای موثر در سیلاب نشان داد که مناطق حاشیه ای واقع در اطراف دشت مرکزی اردبیل از پتانسیل سیل زایی کمتری نسبت به نواحی مرکزی برخوردار هستند. همچنین نتایج نشان داد که با حرکت از جنوب غربی دشت به شمال شرقی آن، درجه سیلاب افزایش یافت. این افزایش پتانسیل سیلابی در اطراف زهکشی اصلی دشت بیشتر از جاهای دیگر است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of flood potential of Ardabil plain using fuzzy models and satellite images

نویسندگان [English]

  • Bromand Salahi 1
  • Mahmoud Behrouzi 2
1 Professor of Hydrology and Meteorology, Faculty of Social Sciences, Mohaghegh Ardabili University
2 Environmental Hazards, Marine Science Institute, Kish International Campus, University of Tehran, Tehran, Iran.
چکیده [English]

Ardebil plain is one of the flood points that requires the understanding of the flood potential. In this study, the flooding potential of Ardebil plain was performed using environmental parameters, observations of flood points and lack of floods and prediction algorithms were made including random forest and logistics regression. Independent parameters include DEM, Slope, Aspect, Distance from waterway, distance from dam, runoff accumulation, land use, landforms and indexes Topographic Position Index (TPI), Modified Catchment Area (MCA), Terrain Ruggedness Index (TRI), Topographic Wetness Index (TWI) and Stream Power Index (SPI) Indices. The Roc-AUC assessment results showed that the RF and LR model were validated by 0.99 and 0.98, and it shows that random forest models and logistics regression have the ability to predict and prepare a flood sensitivity map in Ardebil plain. The output of parameters effective in flooding showed that the marginal areas located around the central plain of Ardabil have less flood-flooding potential than the central areas. The results also showed that by moving from the southwest of the plain to its northeast, the grade of floods increased. This increase in flooding potential around the main drainage of the plain is greater than elsewhere.

کلیدواژه‌ها [English]

  • Ardabil Plain
  • Flood
  • Logistic Regression
  • Random Forest
Abedini, M., and I. Beheshti Javid, I., (2017) Evaluation of the flooding situation of Liqvan-chai catchment area using the combined model of network analysis process and fuzzy logic. Journal of Quantitative Geomorphology Research, 1, pp 62-179.
Ai, Y., and Qian, W. (2020). Anomaly-based synoptic analysis on the Heavy Rain Event of July 2018 in Japan. Natural Hazards, 101, pp1-18.
Akay, H., and Baduna Koçyiğit, M. (2020). Flash flood potential prioritization of sub-basins in an ungauged basin in Turkey using traditional multi-criteria decision-making methods. Soft Computing, 24(18), pp14251-14263.‏
Al-Juaidi, A. E., Nassar, A. M., and Al-Juaidi, O. E. (2018). Evaluation of flood susceptibility mapping using logistic regression and GIS conditioning factors. Arabian Journal of Geosciences, 11(24), pp1-10.‏
Chen, Y. R., Yeh, C. H., and Yu, B. (2011). Integrated application of the analytic hierarchy process and the geographic information system for flood risk assessment and flood plain management in Taiwan. Natural Hazards, 59(3), pp1261-1276.‏
Das, S. (2020). Flood susceptibility mapping of the Western Ghat coastal belt using multi-source geospatial data and analytical hierarchy process (AHP). Remote Sensing Applications: Society and Environment, 20, pp100379.‏
Feiz Nia, S., Musavian, M., Abdolahian Dehkordi, Z., and Ebrahimi Dorche, K. (2017). Investigating Geology Impact upon Flood Occurrence (Case Study: Joneghan Watershed Basin, Shahr-e-Kord). Journal of Range and Watershed Managment, 69(4), pp1017-1030. doi: 10.22059/jrwm.2017.61317
Garner, M., Sebastian, A., Hakkenberg, C. R., Juan, A., Gori, A., and Bedient, P. B., (2019), Integrating Annual Landsat Imagery in a Hydrologic Impact Analysis of Localized Land Use Change for a Rapidly Developing Watershed in Houston, Texas. AGUFM, 2019, H53L-1943.
Ghosh, A., Dey, P., and Ghosh, T. (2022). Integration of RS-GIS with Frequency Ratio, Fuzzy Logic, Logistic Regression and Decision Tree Models for Flood Susceptibility Prediction in Lower Gangetic Plain: A Study on Malda District of West Bengal, India. Journal of the Indian Society of Remote Sensing, 2022. 50, pp725–1745.
Ighile, E. H., Shirakawa, H., and Tanikawa, H. (2022). A Study on the Application of GIS and Machine Learning to Predict Flood Areas in Nigeria. Sustainability, 14(9), pp5039.
Kang, Y., Peng, X., Wang, S., Dong, C., Shang, K., and Zhao, Y. (2020). Statistical characteristics and synoptic situations of long‐duration heavy rainfall events over North China. Earth and Space Science, 7(5), e2019EA000923.
Kia, M. B., Pirasteh, S., Pradhan, B., Mahmud, A. R., Sulaiman, W. N. A., and Moradi, A. (2012). An artificial neural network model for flood simulation using GIS: Johor River Basin, Malaysia. Environmental earth sciences, 67(1), pp251-264.
Kumar, A., Dudhia, J., Rotunno, R., Niyogi, D., and Mohanty, U. C. (2008). Analysis of the 26 July 2005 heavy rain event over Mumbai, India using the Weather Research and Forecasting (WRF) model. Quarterly Journal of the Royal Meteorological Society, 134(636), pp1897-1910.
Meliho, M., Khattabi, A., Driss, Z., and Orlando, C. A. (2022). Spatial prediction of flood-susceptible zones in the Ourika watershed of Morocco using machine learning algorithms. Applied Computing and Informatics. DOI:10.1108/ACI-09-2021-0264.
Mosaffaie, J., Kamali, M., Pourjam, A., Soleymani, K., Shahedi, K., and Gomrokchi, A. (2020). Evaluation the Efficiency of AHP Model in Prioritizing of Barajin Sub Watersheds from Flood Potential Viewpoint. Journal of Watershed Management Research, 11(21), pp48-58.‏
Mosavi, A., Golshan, M., Janizadeh, S., Choubin, B., Melesse, A. M., and Dineva, A. A. (2022). Ensemble models of GLM, FDA, MARS, and RF for flood and erosion susceptibility mapping: a priority assessment of sub-basins. Geocarto International, 37(9), pp2541-2560.
Mosavi, SM; Negahban, S; Rokhshani Moghadam, H; Hosseinzadeh, SM (2015). Flood risk assessment and zoning using TOPSIS fuzzy logic in GIS environment (case study: Baghmelek watershed). Journal of Natural Environmental Hazards, 5(10), pp79-98.
Nandi, A., Mandal, A., Wilson, M., and Smith, D. (2016). Flood hazard mapping in Jamaica using principal component analysis and logistic regression. Environmental Earth Sciences, 75(6), pp1-16.‏
Nasrin Nejad, N; Rangzan, K; Kalantari, N; Saberi, A (2014). Flood potential zoning of Baghan watershed using fuzzy hierarchical analysis method (FAHP). Journal of remote sensing and geographic information system and natural resources, 5(4), pp15-34.
Pham, B. T., Avand, M., Janizadeh, S., Phong, T. V., Al-Ansari, N., Ho, L. S., ... and Prakash, I. (2020). GIS based hybrid computational approaches for flash flood susceptibility assessment. Water, 12(3), pp683. https://doi.org/10.3390/w12030683.
Puno, G. R., Amper, R. A. L., Opiso, E. M., and Cipriano, J. A. B. (2020). Mapping and analysis of flood scenarios using numerical models and GIS techniques. Spatial Information Research, 28(2), pp215-226.‏
Rahmati, O., Zeinivand, H., and Besharat, M. (2016). Flood hazard zoning in Yasooj region, Iran, using GIS and multi-criteria decision analysis. Geomatics, Natural Hazards and Risk, 7(3), pp1000-1017.‏
Ramesh, V., and Iqbal, S. S. (2022). Urban flood susceptibility zonation mapping using evidential belief function, frequency ratio and fuzzy gamma operator models in GIS: a case study of Greater Mumbai, Maharashtra, India. Geocarto International, 37(2), pp581-606.‏
Samantaray, S., Das, S. S., Sahoo, A., and Satapathy, D. P. (2022). Evaluating the application of metaheuristic approaches for flood simulation using GIS: A case study of Baitarani river Basin, India. Materials Today: Proceedings, 61, pp452-465.
Schilling, K. E., Gassman, P. W., Kling, C. L., Campbell, T., Jha, M. K., Wolter, C. F., and Arnold, J. G., (2014), The potential for agricultural land use change to reduce flood risk in a large watershed. Hydrological processes, 28(8), pp3314-3325. ‏
Schismenos, P., Karvelis, P., and Stylios, C. (2021, June). Risk Flood Assessment for the Arachthos River using Analytic Hierarchy Process. In 2021 29th Mediterranean Conference on Control and Automation (MED) (pp. 1167-1172). IEEE.‏
Seluchi, M. E., and Chou, S. C. (2009). Synoptic patterns associated with landslide events in the Serra do Mar, Brazil. Theoretical and Applied Climatology, 98(1-2), pp67-77.
Shahiri Tabarestani, E. and M.S. Zakai, Evaluation of the flood potential of the watersheds of Mazandaran province using the Analytical Hierarchy (AHP) method. Journal of Environment and Water Engineering, 2020. 6(4), pp331-334.
Tang, Z., Engel, B. A., Pijanowski, B. C., and Lim, K. J., (2005), Forecasting land use change and its environmental impact at a watershed scale. Journal of environmental management, 76(1), pp35-45. ‏
Teixeira, M. S., and Satyamurty, P. (2007). Dynamical and synoptic characteristics of heavy rainfall episodes in southern Brazil. Monthly Weather Review, 135(2), 598-617.
Van Coppenolle, R., Schwarz, C., and Temmerman, S. (2018). Contribution of mangroves and salt marshes to nature-based mitigation of coastal flood risks in major deltas of the world. Estuaries and coasts, 41(6), pp1699-1711.
Wu, S., Jang, J., Wu, T., Lin, J., and Li, B., (2019), An evaluation of the flood diversion project d Junaidi ue to extreme rainfall event in Taipei City. In IOP Conference Series: Materials Science and Engineering, 615(1), pp012061). IOP Publishing.
Xu, Y. (2020). Synoptic and Large-scale Circulation Causes of Extreme Precipitation on the Southeast Coast of the Atlantic Ocean (Doctoral dissertation, Duke University).
Ziary, K., S.A. Rajaei, and R. Darabkhani, (2022) Flood potential zoning using hierarchical analysis and fuzzy logic in GIS environment, case study: Ilam city. Journal of Crisis Management, 19, pp21-30.
Zzaman, R. U., Nowreen, S., Billah, M., and Islam, A. S. (2021). Flood hazard mapping of Sangu River basin in Bangladesh using multi‐criteria analysis of hydro‐geomorphological factors. Journal of Flood